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• Defining Predictive Analytics & Machine Learning

• The Importance of Predictive Analytics

• Practical Use Cases & Demo for Predictive Analytics
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Agenda



Predictive Analytics Machine Learning

Condenses large volumes of data

Relies on human experts to test 

associations between cause & outcome.

CATCH Intelligence offers Data 

Scientists

Data needs to be refreshed

Branch of Predictive Analytics

Relies on sophisticated algorithms to 

parse data, recognize patterns and 

learn from the data without being 

programmed.

Continuous learning with a lot of 

historical data
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Defining Machine Learning and Predictive Analytics



4,300% 
increase in annual data production by 20201

77% 
of organizations lack a comprehensive 

information platform2

85% 
of people spend extensive amounts of time

trying to find the right data3
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Data-Driven Decisions in Businesses

1. Forbes: “Big Data Overload: Why Most Companies Can't Deal With The Data Explosion”, Bernard Marr, April 2016

2. IDC MaturityScape “Information, Digital Transformation” 

3. AIIM “A Holistic Approach to Digital Transformation” 
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Shift from Analytics to Foresight

What 
happened?

What will 
happen?

How can 
we make it 
happen?

HINDSIGHT

INSIGHT

FORESIGHT

V
A

LU
E

DIFFICULTY



DOT Road Maintenance



Optimize funds for bridge and road repairs

– Discover factors affecting wear

– Rely on data for improved decision making 

– Allocate and use available funds vs continually requesting additional funds

– Deploy resources to make repairs and improvements proactively

10/26/2018 CATCH Intelligence — www.catchintelligence.com 7

Predictive Analytics: DOT Use Case

Year over year, costs have outpaced CPI Inflation. 

CPI Inflation Rate Average 2006-2017 =  1.8% Annually

Rapid Rate of 
Increased Road 

Repair



Serviceability Index (SI)  

• Comprehensive road quality index

• Prioritize and schedule maintenance

• Deterioration Rate refers to the rate of reduction 

for the road’s SI value

• Used Structural Information in a Ridge Regression 

Model to Predict future SI
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Road Asset Management

 Pavement Material Type

 Surface Thickness

 International Roughness Index (IRI)

 Number of Lanes

 Truck Annual Daily Traffic (ADT)

Maintenance District

 National Highway System Code

Structural Information



SI Condition Description

90-100 Excellent Road surface is in like new condition

70-90 Good
Provides a comfortable smooth ride
Exhibits few if any visible signs of deterioration

50-70 Fair
Can include rutting, map cracking, or extensive patching
May not be tolerable for high speed traffic

30-50 Poor
Roadway has deteriorated affecting free-flow traffic
May have large potholes and deep cracks

0-30 Very Poor Only traversable at reduced speeds
Distress occurs over 75 percent or more of the surface

9

Serviceability Index Evaluation Codes



• 9 stretches of road

• All had an SI of 50-75 or a Fair SI Condition.
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Repair Planning – Based on SI Score
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Results by Lowest SI Scores
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Repair Planning – Deterioration by Surface Type

0.72

0.34

1.11

1 2 3

D
E

T
E

R
IO

R
A

T
IO

N
 R

A
T

E

SURFACE TYPE

ANNUAL DETERIORATION RATE BY SURFACE TYPE



10/26/2018 CATCH Intelligence — www.catchintelligence.com 13

Results by Surface Type
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Repair Planning by District
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Results by District
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Several Variables = Inconsistent Results



1) Predict primary deterioration factors of roads

2) Predict/prioritize road repairs proactively
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Predictive Analytics Recommendation

Historical 
data sent to 
predictive 
model

Model 
predicts 

deterioration 
based on 

road quality

Model 
applied to 

roads 
considered 
for repair

Predict and 
prioritize road 
repairs based 
on future SI

Proactively 
select roads 

to repair 
based upon 

need
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Predicting Future SI

Data Warehouse New Data

Model is Automatically Updated
By Model Manager

External Data Sets

Future SI

Predictive Model
Model Manager

Higher Quality Data = More Accurate Model
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The Difference with Predictive
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Result: 5 Year Repair Planning
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Utility Company: 

Optimized Bid Strategy



10/26/2018 CATCH Intelligence — www.catchintelligence.com 22

Utility Company: Data-Driven Decisions

Before Predictive With Predictive

Isolated data Data used in proportion to its effect on the target

Unused data Data easily analyzed for contribution to 
predictive models

High risk decisions Continually assess “right time to sell”
Save time
Increase profits



Bi-lateral Trade Agreement for 

200 Mwh per hour

• 95% of trade occurs in 

day-ahead market

• Purchase options in the 

day-ahead market, lock in the 

rates, settle in real-time market

• Hours not spent in the 

day-ahead market can be used 

in real-time market the next day

• 12 Analysts
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Energy Trading

200 MwhNode A Node B



• Company wants analysts to optimize hedging strategies. 

• Can they use transmission rights in a more speculative way?

• How can they be more aggressive?

• How can analysts split 200 hours between day-ahead market and real-time market?

• What is an acceptable amount of risk?

– More speculative the company is, the more the Company is open to crew obligations

• How do we allocate human analyst resources to this challenge?
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Predictive Analytics: Challenges



• Volume of data

– 18 months of day-ahead hourly historical data

• Types of Data

– Historical LMP Differences

– Forecasted Wind Megawatt Hour Generation

– Forecasted Midterm Load

– Hourly Temperature

– Natural Gas Prices
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Complex Data
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• Historical data fed into predictive 

modeler to create Predictive Algorithm

• Algorithm predicts whether or not it is 

Good to Buy

• Model applied to new observations to 

predict whether or not it is Good to Buy 

for each Day-Ahead hour

• Models can be created for the specifics 

of Real-Time Marketing as well
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Predicting Day-Ahead Energy Prices

Data Warehouse
New 
Data

Model is Automatically 
Updated

By Model Manager

External Data 
Sets

Buy

Predictive Model Model Manager
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Contributions by Variable – Day-Ahead Buy
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Comparing Outcomes: Financial Gains
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$223,216 Financial Gain with Predictive Analytics from CATCH Intelligence (4 month period)
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Comparing Outcomes: Accurate Results
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• 84% less time involved when bid strategies are optimized by CATCH Intelligence

• Algorithms tailored to every unique bidding situation

• Manage risk exposure

• Leverage existing data infrastructure

• Remove excess costs and complexity in analytics systems
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Comparing Outcomes: Additional Benefits
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