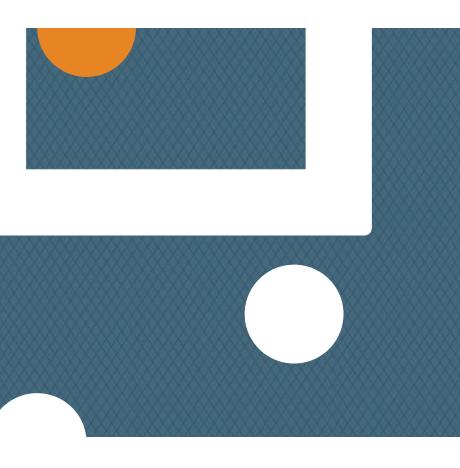
Predictive Analytics: Making Analytics Work

Jared Ellwein CTO, CATCH Intelligence



Agenda

- Defining Predictive Analytics & Machine Learning
- The Importance of Predictive Analytics
- Practical Use Cases & Demo for Predictive Analytics

Defining Machine Learning and Predictive Analytics

Predictive Analytics	Machine Learning
Condenses large volumes of data	Branch of Predictive Analyti
Relies on human experts to test associations between cause & outcome. CATCH Intelligence offers Data Scientists	Relies on sophisticated algoright parse data, recognize patter learn from the data without programmed.
Data needs to be refreshed	Continuous learning with a historical data

tics

gorithms to erns and t being

a lot of

Data-Driven Decisions in Businesses

4,300%

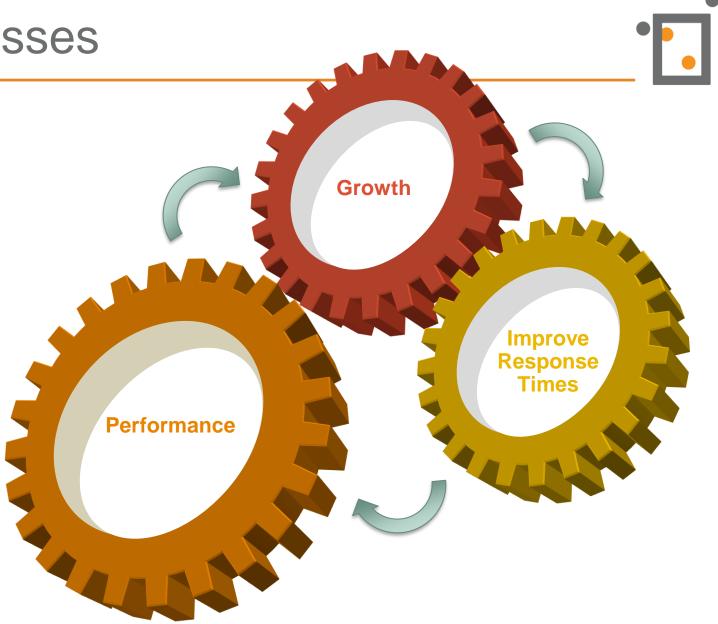
increase in annual data production by 2020¹

77%

of organizations lack a comprehensive *information platform*²

85%

of people spend extensive amounts of time trying to find the right data³



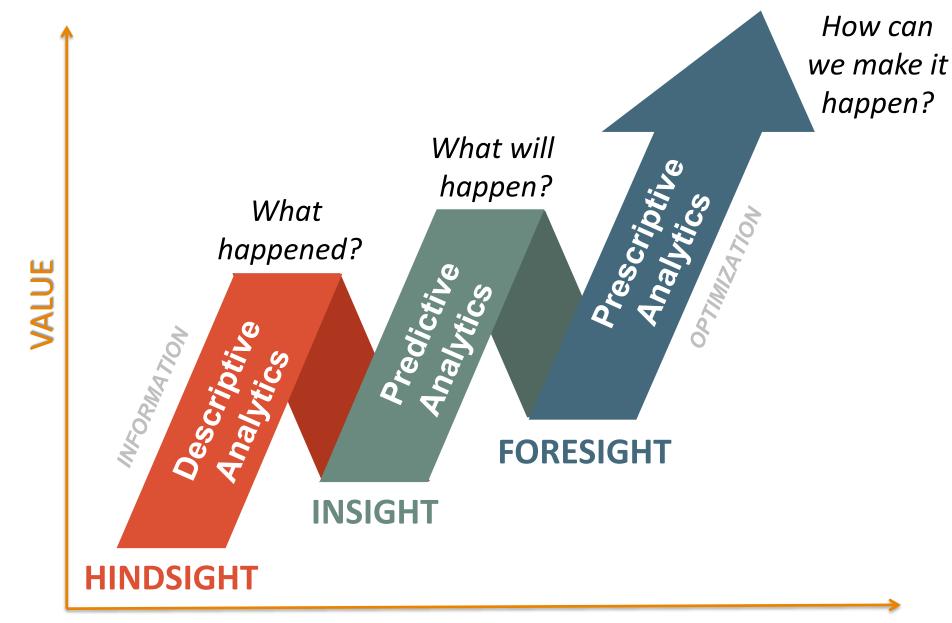
1. Forbes: "Big Data Overload: Why Most Companies Can't Deal With The Data Explosion", Bernard Marr, April 2016

2. IDC MaturityScape "Information, Digital Transformation"

3. AIIM "A Holistic Approach to Digital Transformation"

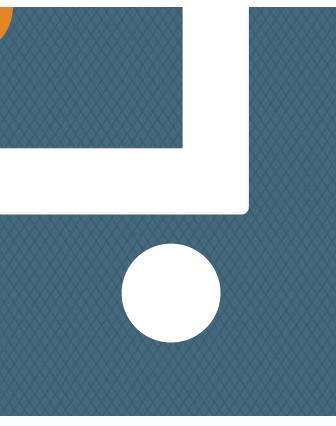
10/26/2018

Shift from Analytics to Foresight



DIFFICULTY

DOT Road Maintenance



Predictive Analytics: DOT Use Case

Optimize funds for bridge and road repairs

- Discover factors affecting wear
- Rely on data for improved decision making
- Allocate and use available funds vs continually requesting additional funds
- Deploy resources to make repairs and improvements proactively

Rapid Rate of Increased Road Repair

Year over year, costs have outpaced CPI Inflation.

CPI Inflation Rate Average 2006-2017 = 1.8% Annually

7

Road Asset Management

Serviceability Index (SI)

- Comprehensive road quality index
- Prioritize and schedule maintenance
- Deterioration Rate refers to the rate of reduction for the road's SI value
- Used Structural Information in a Ridge Regression Model to Predict future SI

- ✓ Pavement Material Type
- ✓ Surface Thickness
- ✓ International Roughness Index (IRI)
- ✓ Number of Lanes
- ✓ Truck Annual Daily Traffic (ADT)
- ✓ Maintenance District
- ✓ National Highway System Code

Structural Information

Serviceability Index Evaluation Codes

SI	Condition	Description
90-100	Excellent	Road surface is in like new condition
70-90	Good	Provides a comfortable smooth ride Exhibits few if any visible signs of deterioration
50-70	Fair	Can include rutting, map cracking, or extensive pa May not be tolerable for high speed traffic
30-50	Poor	Roadway has deteriorated affecting free-flow traf May have large potholes and deep cracks
0-30	Very Poor	Only traversable at reduced speeds Distress occurs over 75 percent or more of the sur

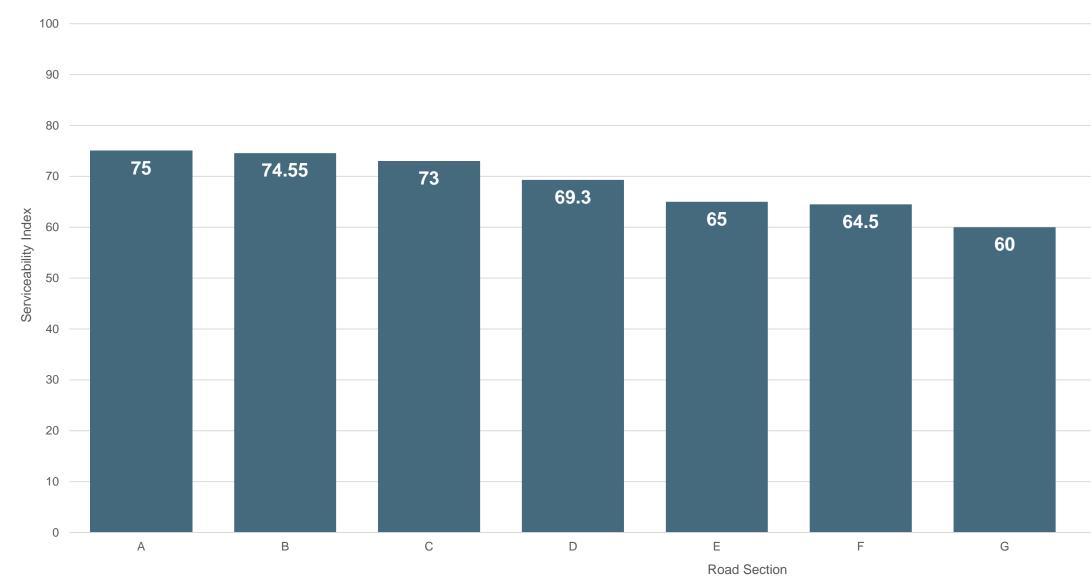
atching

offic

urface

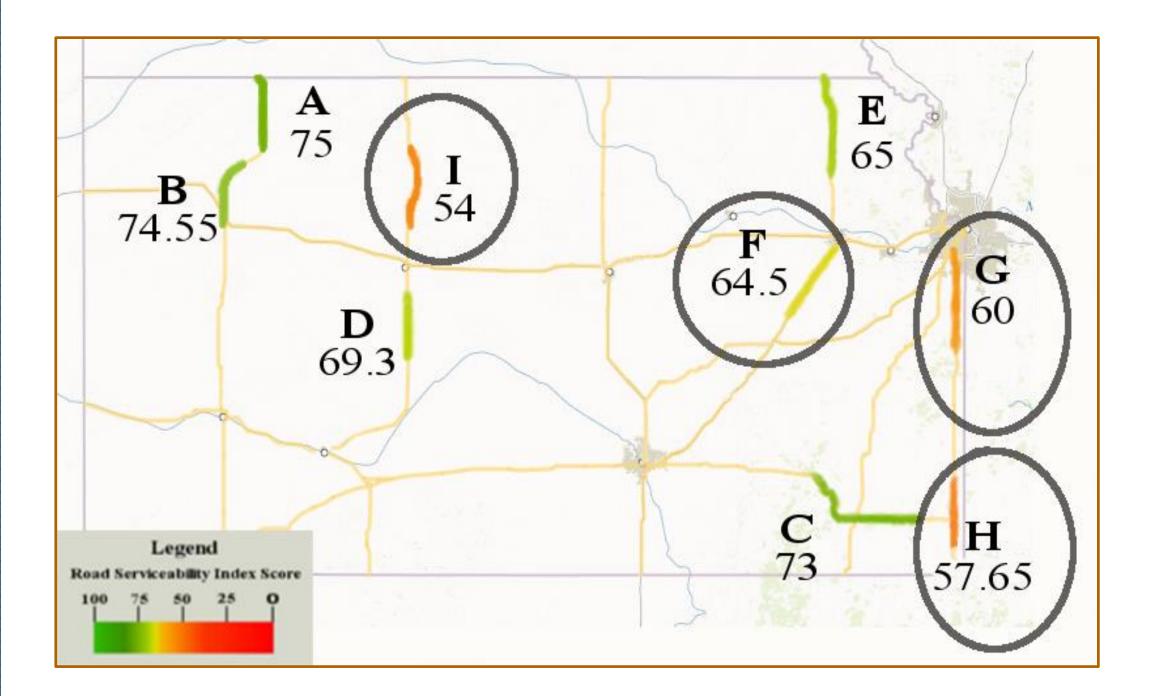
Repair Planning – Based on SI Score

- 9 stretches of road
- All had an SI of 50-75 or a Fair SI Condition.

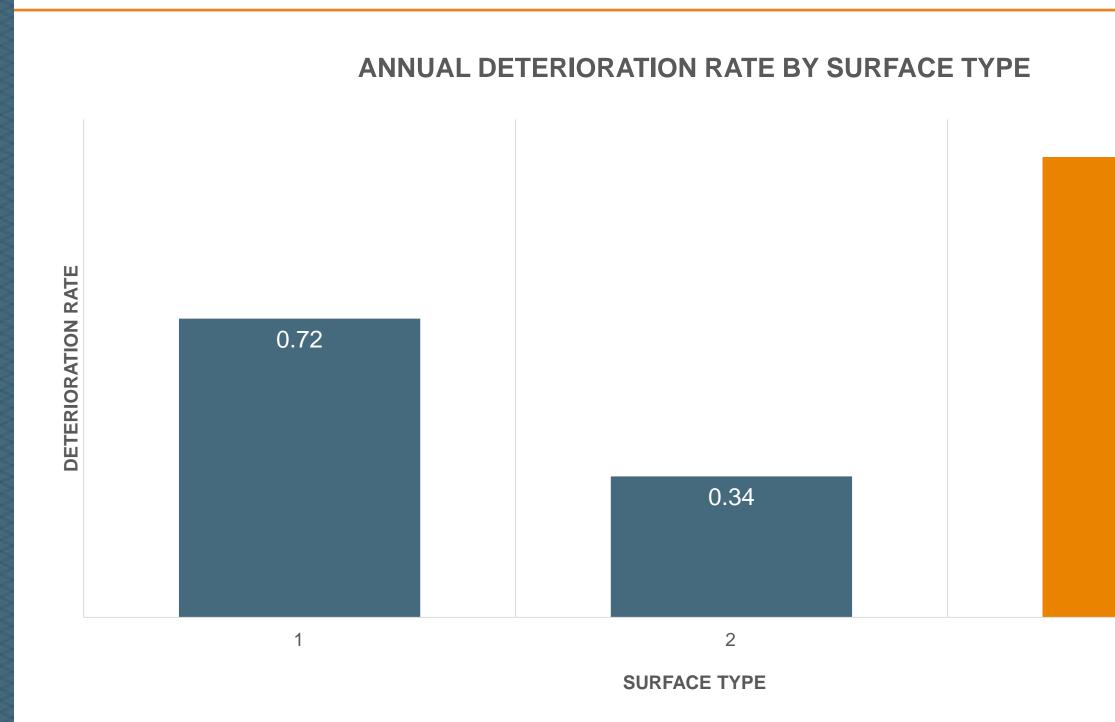


57.65	
	54
Н	1

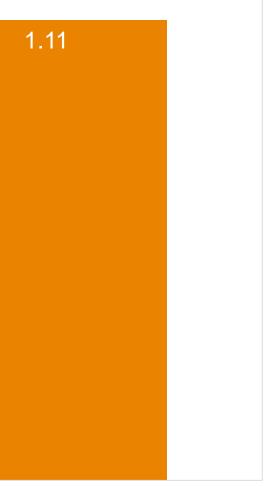
Results by Lowest SI Scores



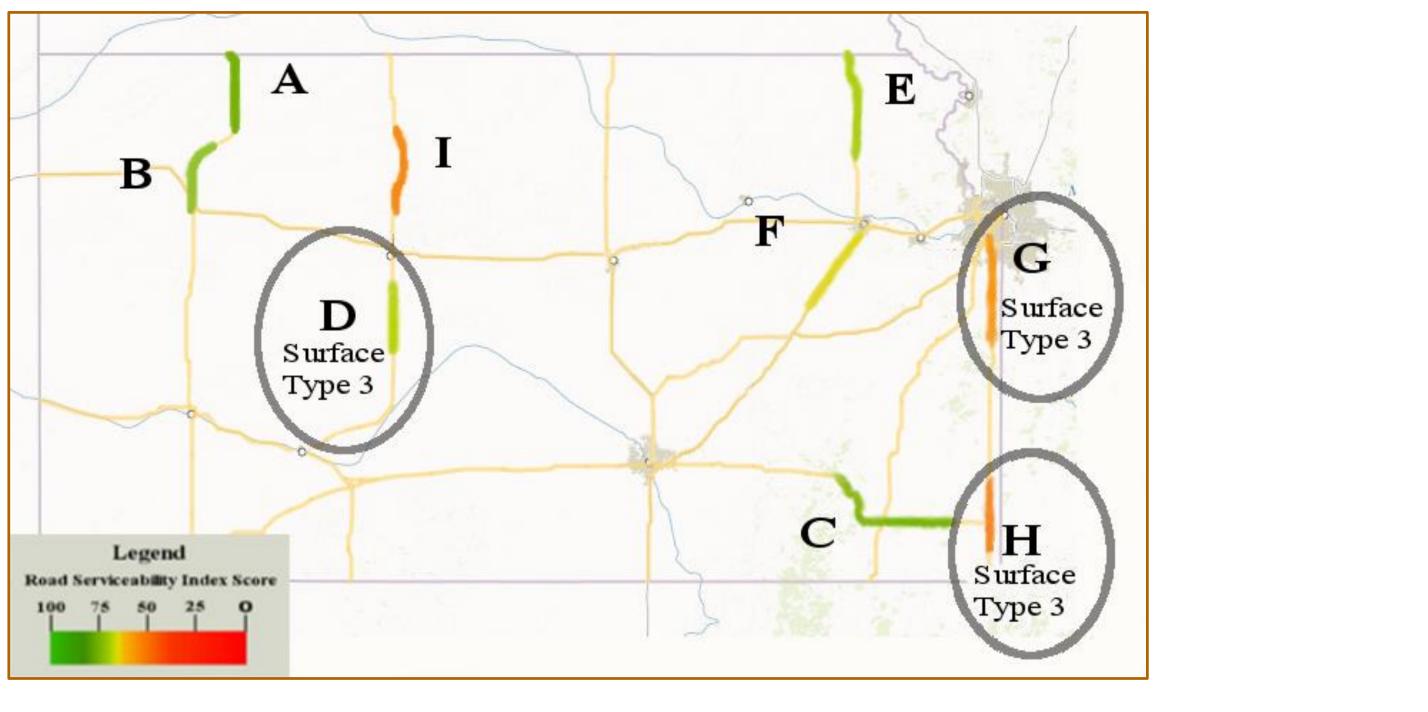
Repair Planning – Deterioration by Surface Type



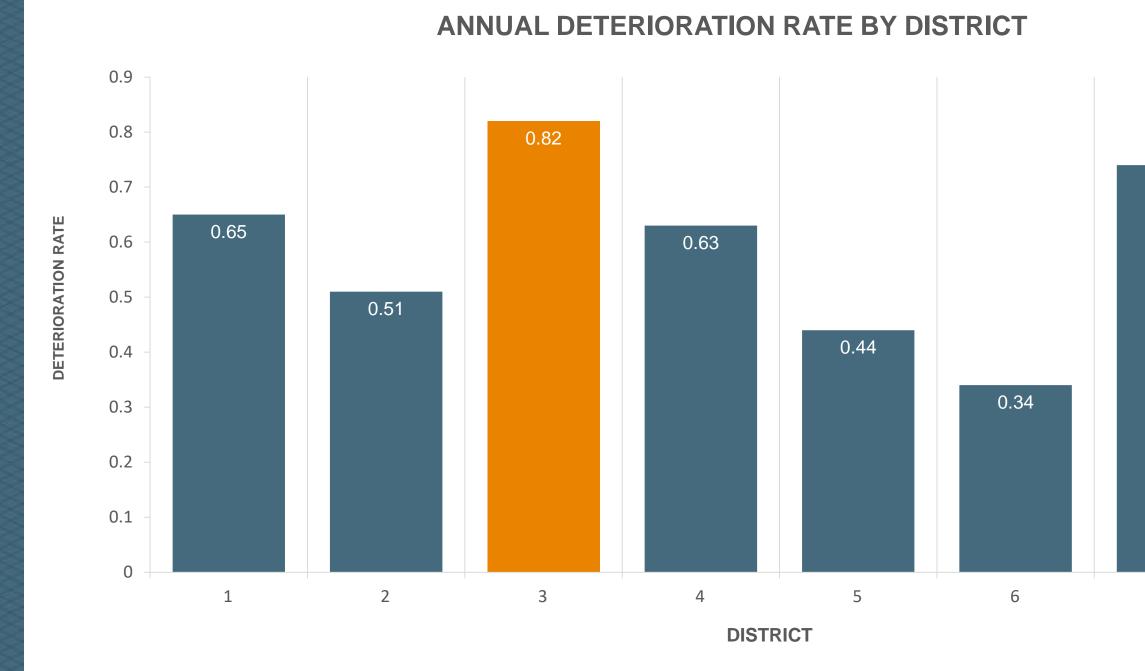
CATCH Intelligence — www.catchintelligence.com

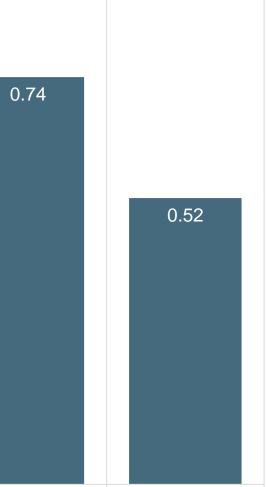


Results by Surface Type



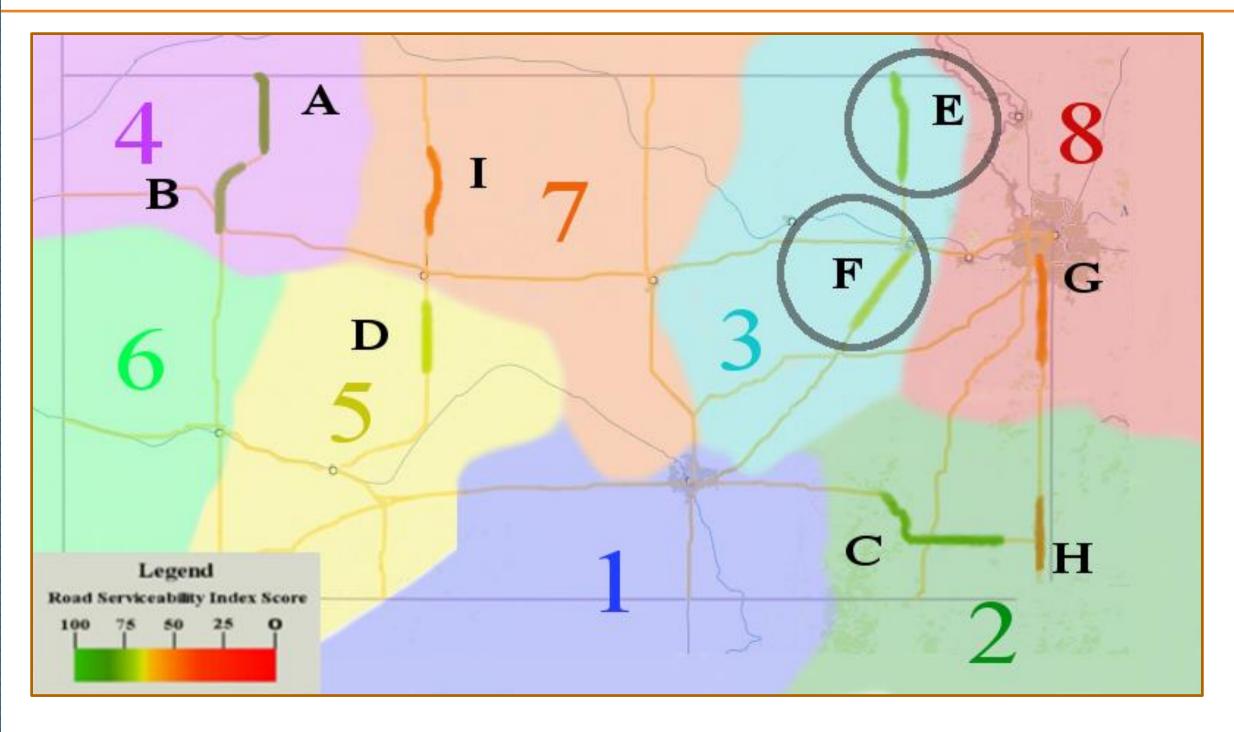
Repair Planning by District



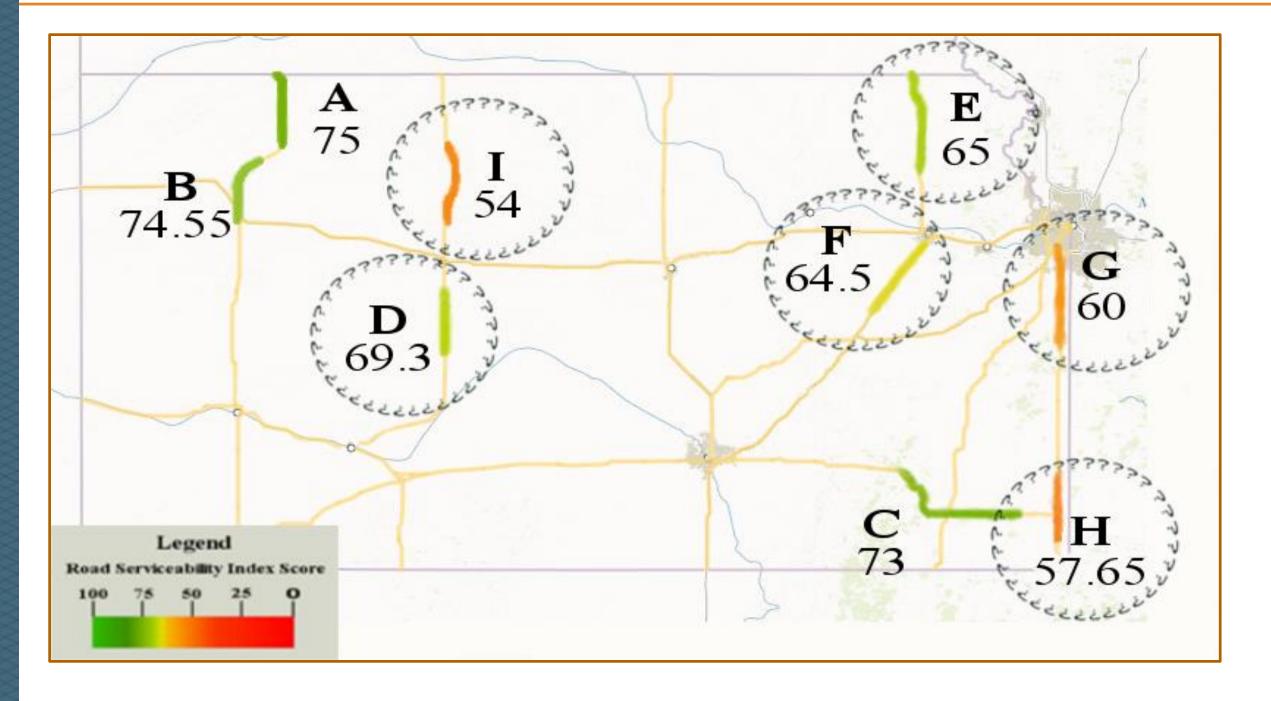


7

Results by District

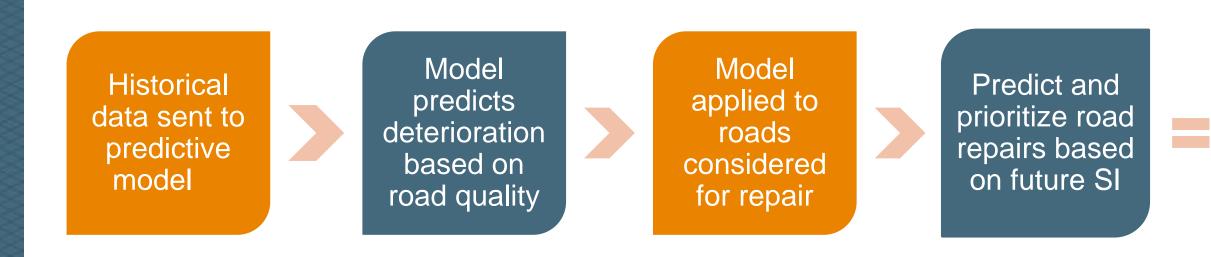


Several Variables = Inconsistent Results



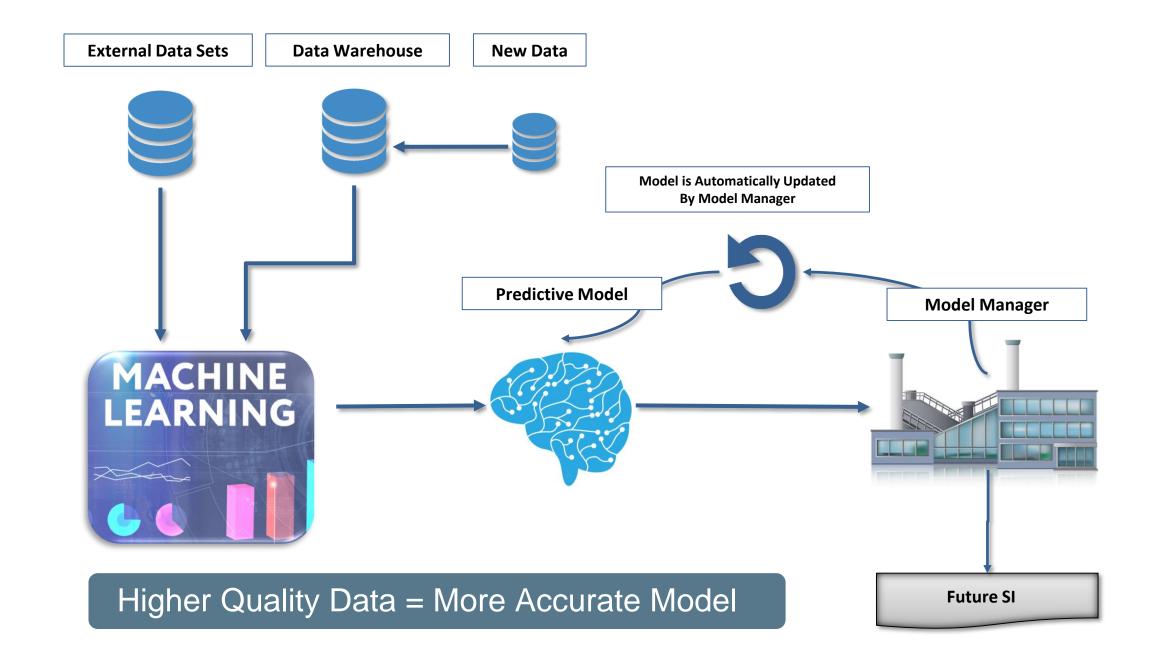
Predictive Analytics Recommendation

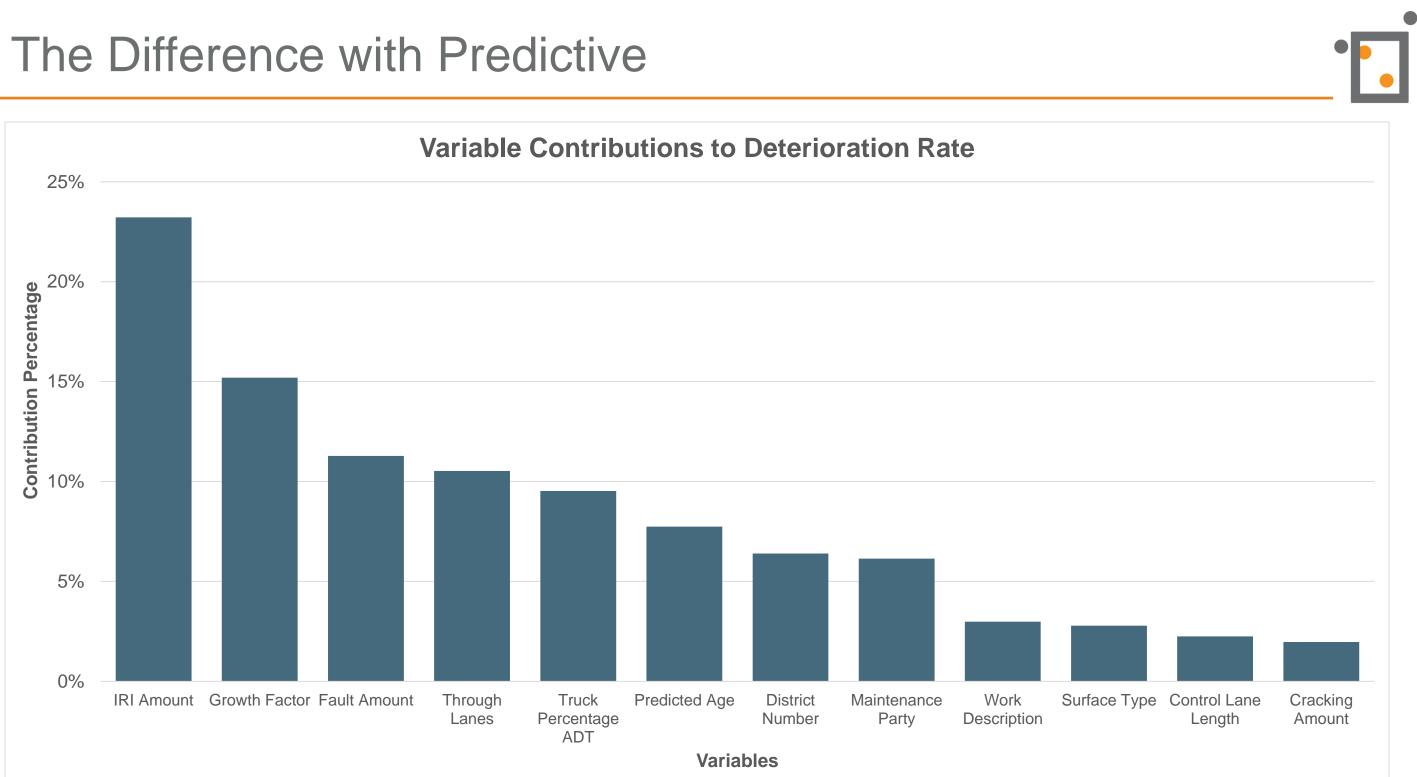
Predict primary deterioration factors of roads
 Predict/prioritize road repairs proactively



Proactively select roads to repair based upon need

Predicting Future SI

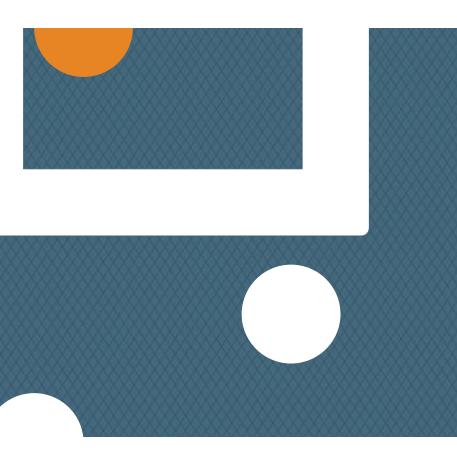




Result: 5 Year Repair Planning

able	All Variables
District	Predictive
	Repair
Х	Repair
Х	
	Repair
	Repair

Utility Company: Optimized Bid Strategy



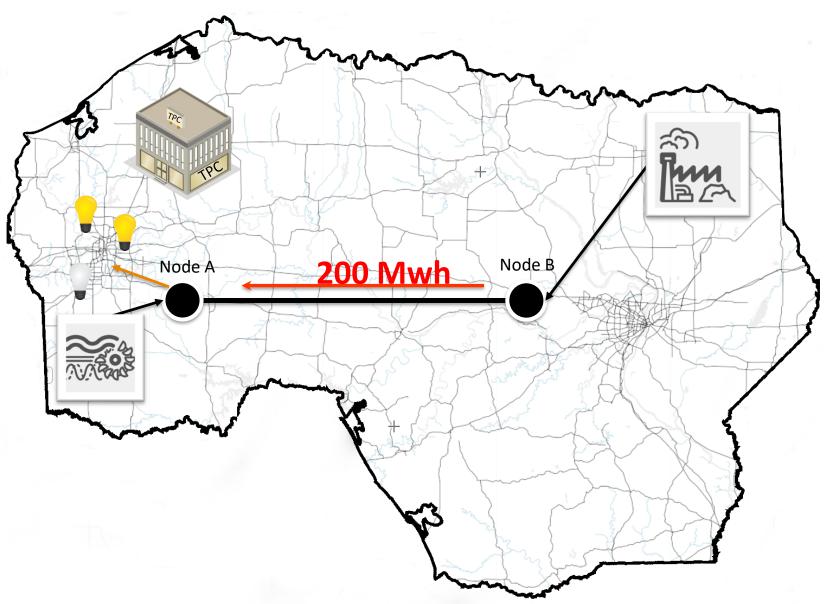
Utility Company: Data-Driven Decisions

Before Predictive	With Predictive
Isolated data	Data used in proportion to its effect on the targ
Unused data	Data easily analyzed for contribution to predictive models
High risk decisions	Continually assess "right time to sell" Save time Increase profits

Energy Trading

Bi-lateral Trade Agreement for 200 Mwh per hour

- 95% of trade occurs in day-ahead market
- Purchase options in the day-ahead market, lock in the rates, settle in real-time market
- Hours not spent in the day-ahead market can be used in real-time market the next day
- 12 Analysts

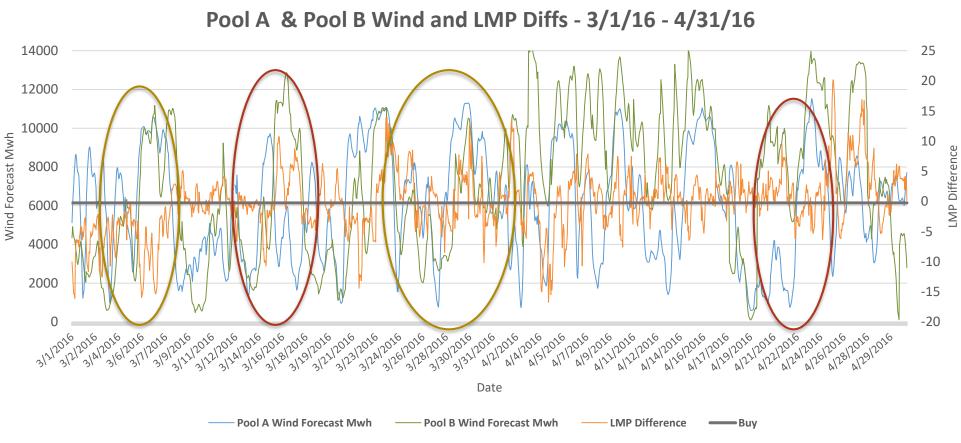


Predictive Analytics: Challenges

- Company wants analysts to optimize hedging strategies.
- Can they use transmission rights in a more speculative way?
- How can they be more aggressive?
- How can analysts split 200 hours between day-ahead market and real-time market?
- What is an acceptable amount of risk?
 - More speculative the company is, the more the Company is open to crew obligations
- How do we allocate human analyst resources to this challenge?

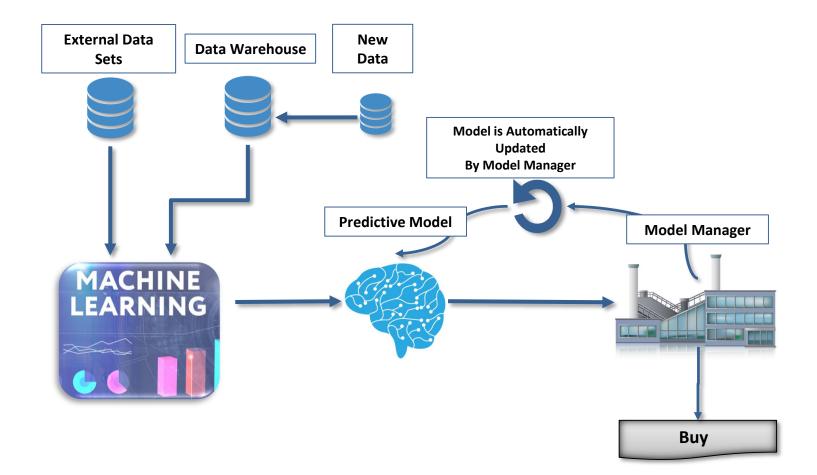
Complex Data

- Volume of data
 - 18 months of day-ahead hourly historical data
- Types of Data
 - Historical LMP Differences
 - Forecasted Wind Megawatt Hour Generation
 - Forecasted Midterm Load ____
 - Hourly Temperature —
 - Natural Gas Prices

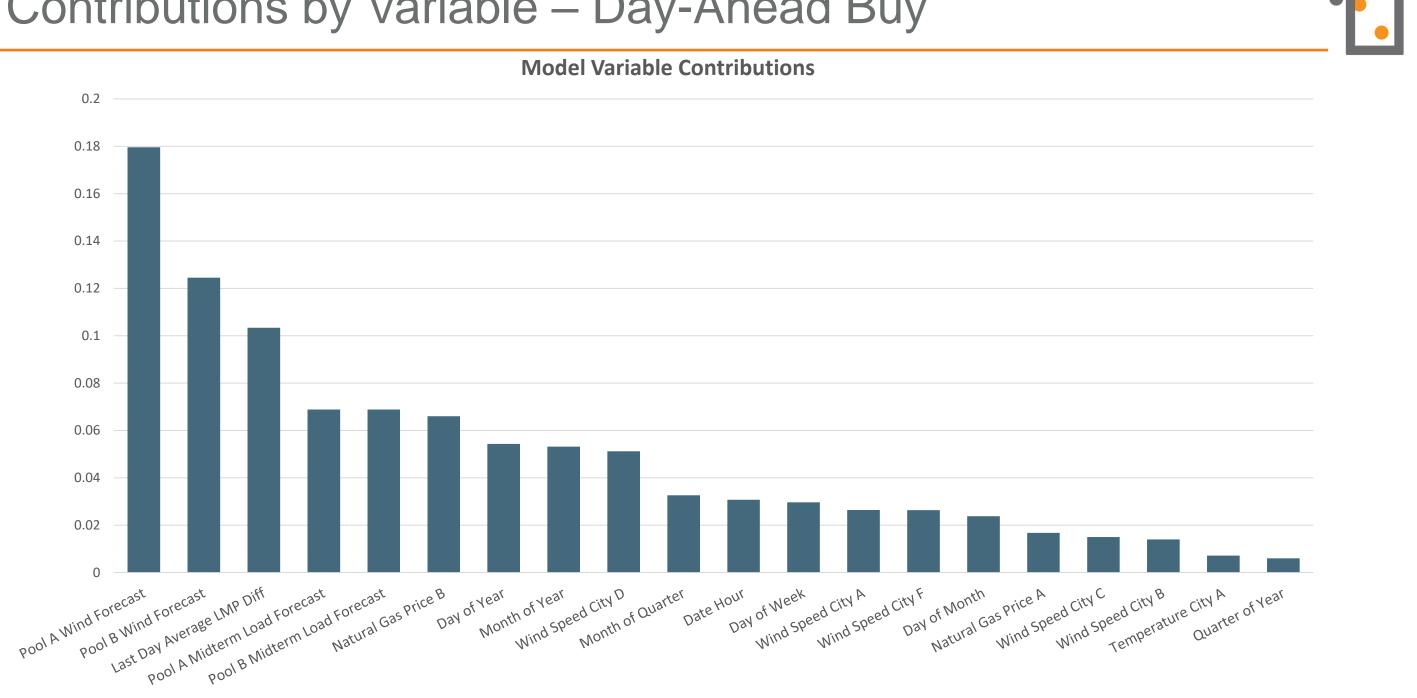


Predicting Day-Ahead Energy Prices

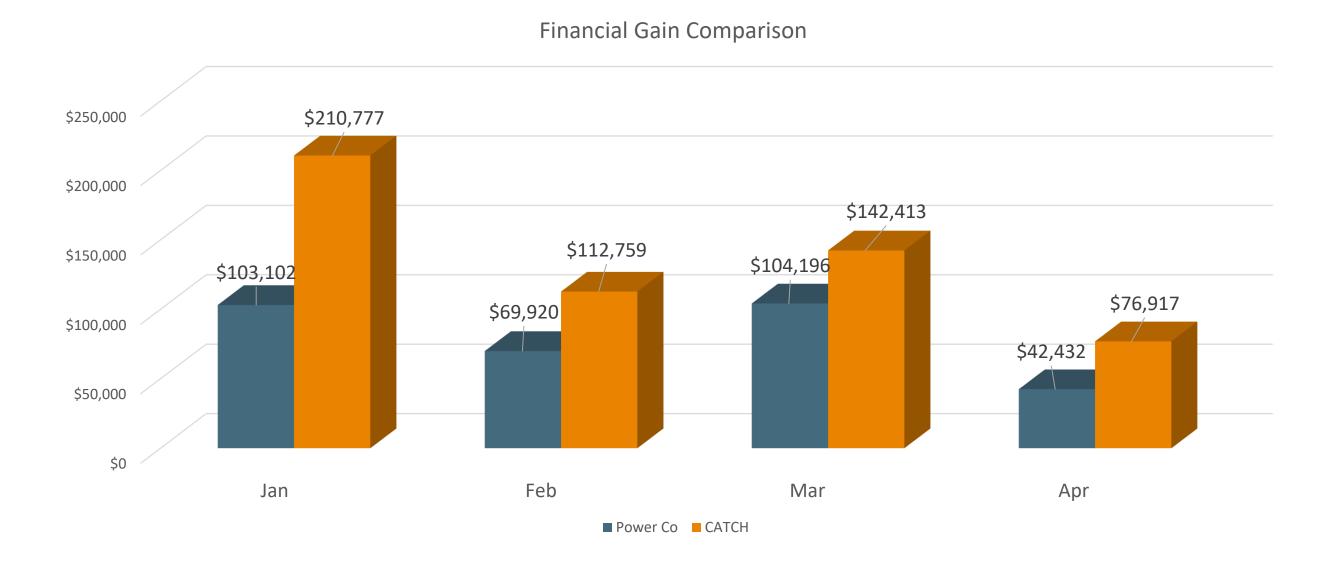
- Historical data fed into predictive
 modeler to create Predictive Algorithm
- Algorithm predicts whether or not it is Good to Buy
- Model applied to new observations to predict whether or not it is Good to Buy for each Day-Ahead hour
- Models can be created for the specifics of Real-Time Marketing as well



Contributions by Variable – Day-Ahead Buy

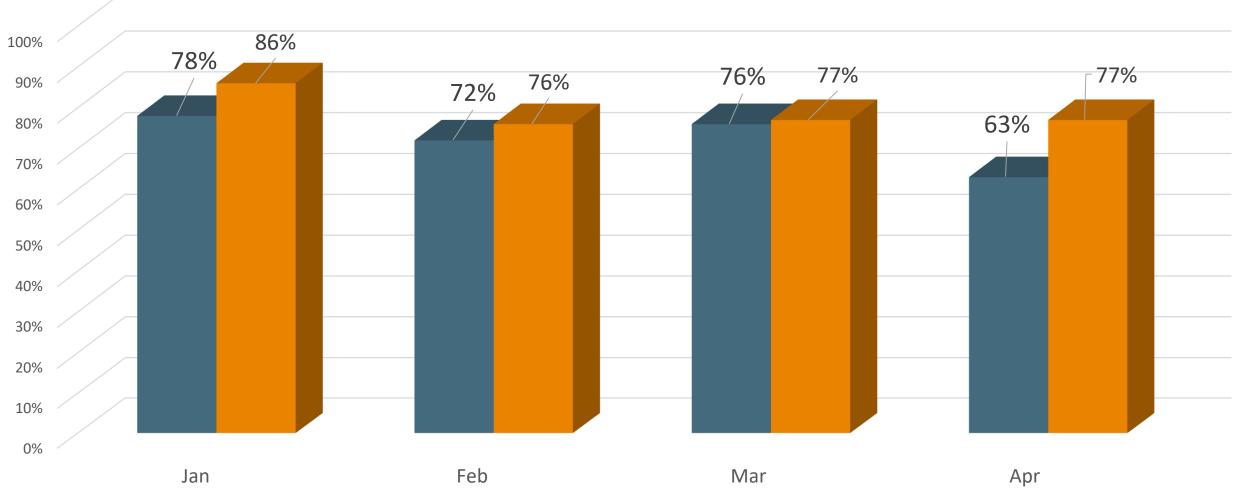


Comparing Outcomes: Financial Gains



\$223,216 Financial Gain with Predictive Analytics from CATCH Intelligence (4 month period)

Comparing Outcomes: Accurate Results



Average Accuracy of Time to Sell: CATCH Intelligence 79% vs. Power Company 72%

10/26/2018

CATCH Intelligence — www.catchintelligence.com

Comparing Outcomes: Additional Benefits

- 84% less time involved when bid strategies are optimized by CATCH Intelligence
- Algorithms tailored to every unique bidding situation
- Manage risk exposure
- Leverage existing data infrastructure
- Remove excess costs and complexity in analytics systems

• CATCHINERIUS CATCHINERUS Lead by Knowing

THANK YOU

www.CatchIntelligence.com

Jared Ellwein CTO, CATCH Intelligence